Part Number Hot Search : 
87XS31D4 1SMA4741 HZZ00113 BC307BBU IS61LV 0E335K8R 1SMA4741 MB100
Product Description
Full Text Search
 

To Download IRFZ34E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  IRFZ34E hexfet ? power mosfet pd - 9.1672a v dss = 60v r ds(on) = 0.042 w i d = 28a l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l ease of paralleling thermal resistance fifth generation hexfets from international rectifier utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. this benefit, combined with the fast switching speed and ruggedized device design that hexfet power mosfets are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications. the to-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. the low thermal resistance and low package cost of the to-220 contribute to its wide acceptance throughout the industry. description parameter min. typ. max. units r q jc junction-to-case CCCC CCCC 2.2 r q cs case-to-sink, flat, greased surface CCCC 0.50 CCCC c/w r q ja junction-to-ambient CCCC CCCC 62 to-220ab s d g 11/4/97 parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v 28 i d @ t c = 100c continuous drain current, v gs @ 10v 20 a i dm pulsed drain current ? 112 p d @t c = 25c power dissipation 68 w linear derating factor 0.46 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 97 mj i ar avalanche current ? 17 a e ar repetitive avalanche energy ? 6.8 mj dv/dt peak diode recovery dv/dt ? 5.0 v/ns t j operating junction and -55 to + 175 t stg storage temperature range soldering temperature, for 10 seconds 300 (1.6mm from case ) c mounting torque, 6-32 or m3 srew 10 lbf?in (1.1n?m) absolute maximum ratings
IRFZ34E notes: parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) showing the i sm pulsed source current integral reverse (body diode) ? p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 17a, v gs = 0v ? t rr reverse recovery time CCC 63 95 ns t j = 25c, i f = 17a q rr reverse recovery charge CCC 130 200 nc di/dt = 100a/s ? t on forward turn-on time ? repetitive rating; pulse width limited by max. junction temperature. ( see fig. 11 ) ? starting t j = 25c, l = 670h r g = 25 w , i as = 17a. (see figure 12) ? i sd 17 a, di/dt 200a/s, v dd v (br)dss , t j 175c ? pulse width 300s; duty cycle 2%. source-drain ratings and characteristics electrical characteristics @ t j = 25c (unless otherwise specified) parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 60 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.056 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC CCC 0.042 w v gs = 10v, i d = 17a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = v gs , i d = 250a g fs forward transconductance 7.6 CCC CCC s v ds = 25v, i d = 17a CCC CCC 25 v ds = 60v, v gs = 0v CCC CCC 250 v ds = 48v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 100 v gs = 20v gate-to-source reverse leakage CCC CCC -100 v gs = -20v q g total gate charge CCC CCC 30 i d = 17a q gs gate-to-source charge CCC CCC 6.7 nc v ds = 48v q gd gate-to-drain ("miller") charge CCC CCC 12 v gs = 10v, see fig. 6 and 13 ? t d(on) turn-on delay time CCC 5.1 CCC v dd = 30v t r rise time CCC 30 CCC i d = 17a t d(off) turn-off delay time CCC 22 CCC r g = 13 w t f fall time CCC 30 CCC r d = 1.8 w, see fig. 10 ? between lead, 6mm (0.25in.) from package and center of die contact c iss input capacitance CCC 680 CCC v gs = 0v c oss output capacitance CCC 220 CCC pf v ds = 25v c rss reverse transfer capacitance CCC 80 CCC ? = 1.0mhz, see fig. 5 intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) CCC CCC 100 CCC CCC 28 a nh l d internal drain inductance CCC 4.5 CCC l s internal source inductance CCC 7.5 CCC i dss drain-to-source leakage current i gss ns a na s d g s d g
IRFZ34E fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 1. typical output characteristics fig 2. typical output characteristics 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 1000 0.1 1 10 100 20s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 0.1 1 10 100 4 5 6 7 8 9 10 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 175 c j t = 25 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 28a
IRFZ34E 1 10 100 1000 1 10 100 1000 operation in this area limited by r ds(on) single pulse t t = 175 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms fig 7. typical source-drain diode forward voltage fig 8. maximum safe operating area fig 5. typical capacitance vs. drain-to-source voltage fig 6. typical gate charge vs. gate-to-source voltage 1 10 100 0 200 400 600 800 1000 1200 v , drain-to-source voltage (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss gs gd , ds rss gd oss ds gd c iss c oss c rss 0.1 1 10 100 1000 0.2 0.6 1.0 1.4 1.8 v ,source-to-drain voltage (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 150 c j 0 5 10 15 20 25 30 0 5 10 15 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 17 a v = 30v ds v = 48v ds
IRFZ34E fig 10a. switching time test circuit + - v ds 90% 10% v gs t d(on) t r t d(off) t f v ds 10 v pulse width 1 s duty factor 0.1 % fig 9. maximum drain current vs. case temperature fig 10b. switching time waveforms r d v gs v dd r g d.u.t. fig 11. maximum effective transient thermal impedance, junction-to-case 25 50 75 100 125 150 175 0 5 10 15 20 25 30 t , case temperature ( c) i , drain current (a) c d 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectan g ular pulse duration ( sec ) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response)
IRFZ34E fig 12c. maximum avalanche energy vs. drain current fig 12a. unclamped inductive test circuit fig 12b. unclamped inductive waveforms fig 13a. basic gate charge waveform fig 13b. gate charge test circuit v ds l d.u.t. v dd i as t p 0.01 w r g + - t p v ds i as v dd v (br)dss d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v q g q gs q gd v g charge 10 v 25 50 75 100 125 150 175 0 50 100 150 200 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 6.9a 12a 17a
IRFZ34E p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfets * vgs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? *
IRFZ34E package outline to-220ab outline dimensions are shown in millimeters (inches) to-220ab part marking information lead assignments 1 - gate 2 - drain 3 - sou rc e 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220-ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. part number international rectifier logo example : this is an irf1010 w ith assembly lot co de 9b1m assembly lot code date code (yyww) yy = year ww = week 9246 irf1010 9b 1m a world headquarters: 233 kansas st., el segundo, california 90245, tel: (310) 322 3331 european headquarters: hurst green, oxted, surrey rh8 9bb, uk tel: ++ 44 1883 732020 ir canada: 7321 victoria park ave., suite 201, markham, ontario l3r 2z8, tel: (905) 475 1897 ir germany: saalburgstrasse 157, 61350 bad homburg tel: ++ 49 6172 96590 ir italy: via liguria 49, 10071 borgaro, torino tel: ++ 39 11 451 0111 ir far east: k&h bldg., 2f, 30-4 nishi-ikebukuro 3-chome, toshima-ku, tokyo japan 171 tel: 81 3 3983 0086 ir southeast asia: 315 outram road, #10-02 tan boon liat building, singapore 0316 tel: 65 221 8371 http://www.irf.com/ data and specifications subject to change without notice. 11/97


▲Up To Search▲   

 
Price & Availability of IRFZ34E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X